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We present two model systems that are suitable for the study of bias in free-energy perturbation(FEP)
calculations which are performed in molecular simulations. The models exhibit the asymmetry that is some-
times seen in these calculations, in which the magnitude of the bias is greater when the calculation is performed
in one direction(A→B, sampling systemA and perturbing into systemB) versus the othersB→Ad. Both
models are formulated as a system ofN independent particles, each sampling a space in the presence of a
one-body field that is different for theA andB systems. In one model the field is a harmonic potential. The
other model is discrete, such that each particle can be at one of two points(or states) of different energy. The
neglected-tail bias model is applied to each system to estimate the average bias as a function of the amount of
FEP sampling, and numerical calculations are performed to show that the bias model is effective. We show that
the bias is significantly smaller when sampling is performed on the system having a broader work distribution
(we designate this direction “insertion”) compared to the bias for FEP calculations that sample the system with
a narrower distribution(“deletion”).
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I. INTRODUCTION

Free-energy perturbation(FEP) is a molecular simulation
method for evaluating free-energy differences[1]. It entails
the simulation of one system to measure an ensemble aver-
age involving energy changes upon instantaneous perturba-
tion into a second system. The systems(labeledA and B)
may differ in many ways, such as the thermodynamic state or
the definition of their Hamiltonians. The importance of FEP
methods derives from the central role that free energy plays
in characterizing the equilibrium of a system[2]. Measure-
ments of free-energy differences can be used to assess the
relative stability of the two systems, thereby furthering un-
derstanding of their behavior and enabling their intelligent
manipulation.

Many examples can be given. Evaluation of the solubility
of a gas or solid in a liquid is fundamental to many applica-
tions, and its conduct by molecular simulation involves the
evaluation of the chemical potential of one solute molecule
at infinite dilution in the liquid. This requires a free-energy
calculation for the process in which the molecule is added to
(or removed from) the solvent. Particle removal is well
known to perform poorly in this application, but particle in-
sertion is not without its complications either[3]. The best
way to proceed for a given system is not always obvious, and
considerable extra effort can be needed to ensure a good
result. The process could be improved with better under-
standing of the nature of the calculation. As another example,
assessment of the relative stability of crystal polymorphs[4]
is an important problem from many standpoints: scientifi-
cally, technologically, and economically. The question of
relative stability can in principle be assessed by a compari-
son of the free energies of the competing forms. In practice
the true free energy is not considered when molecular mod-
eling is applied to this question. Instead, crude approxima-
tions such as neglect of entropy are applied. The inability to
describe polymorphic behavior reliably is, at least in part,

due to the difficulty of evaluating the free energy accurately
for these model systems.

In these systems and many others of interest, the problems
involved in calculating the free energy have common origins.
Sampling must be performed in a way that both systems
involved in the free-energy difference are sampled well. Fail-
ure to sample well does not always give obviously wrong
results and, consequently, it is as important to identify the
presence of a sampling problem as it is to develop ways to
overcome it. Progress can be made by working with simple,
analytically tractable models that exhibit the essential fea-
tures that give rise to difficulties found in real free-energy
calculations and measurements. In studying these models we
can develop metrics that signal the presence of a problem
with the calculation and that can be used to identify or for-
mulate methods that are effective in a given situation. Pres-
ently there are no such models available for this purpose, and
this work aims to address this deficiency.

The working equation for a FEP calculation is[5]

exps− bDFd = kexps− bWdlA, s1d

whereDF=FB−FA is the free-energy difference,b=1/kT is
the reciprocal temperature in energy units, andW is the work
involved in perturbing from systemA into systemB for a
given configuration. In terms of the molecular potential en-
ergyU, W=UB−UA. Subscripts indicate values for theA and
B systems, respectively. The FEP method is a special case of
the more general nonequilibrium work(NEW) formalism of
Jarzynski [6]. The NEW formalism expresses free-energy
differences in terms of an average of the form of Eq.(1), but
interpreting the average as one over an ensemble of initial
conditions and permitting the transformation to be performed
at any rate. FEP is an important special case because it can
be implemented while sampling the “initial” system exclu-
sively, so the free-energy calculation need not disturb the
collection of other averages. Also, because FEP does not
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require the lengthy calculations involved in the work process
and reequilibrating afterwards, usually many more FEP mea-
surements can be performed than is possible in the more
general NEW case. On the other hand, to the extent that the
NEW calculation is performed reversibly, fewer measure-
ments are required to obtain a good estimate of the average.
NEW measurements are also of interest because they can be
performed on real systems in the laboratory[7].

Work distributions play a central role in the study and
application of NEW calculations(including the FEP special
case) [6,8]. The distributionpAsWd is the probability density
for observing the work valueW when performing the trans-
formationA→B when beginning from an equilibratedA sys-
tem. Likewise,pBsWd is the probability density for observing
work −W for a B→A transformation(we defineW indepen-
dently of the direction, so for FEP it is alwaysUB−UA). The
two conjugate work distributions are related[8,9]:

pAsWde−bW = pBsWde−bDF. s2d

The free-energy difference is given from the distributions via

exps− bDFd =E
−`

`

pAsWde−bWdW, s3ad

exps+ bDFd =E
−`

`

pAsWde+bWdW. s3bd

A severe problem with the use of FEP calculations and NEW
calculations, in general, is the strong tendency of the aver-
ages to exhibit bias or inaccuracy[10,11]. In some cases it is
possible for repeated measurements to produce the same in-
correct result, so it can be difficult to detect the inaccuracy
from the simulation data alone. Moreover, the bias is often
asymmetric in magnitude, meaning that a NEW calculation
performed by averagingA→B work processes is different
from the bias obtained usingB→A processes[3,12–14].

In previous studies we have examined this bias, and most
recently we have considered it for the special case in which
the distribution of work values follows a Gaussian form[15].
However, the Gaussian-work model is incapable of charac-
terizing asymmetric bias. Our interest in the present work is
to introduce models that can capture this feature of NEW
calculations. We are interested in particular in developing
and examining models that are based on a Hamiltonian,
rather than one that is defined directly in terms of the work
distributions. A Hamiltonian-based model is defined on a
phase space, and we think that basic understanding of the
nature of the NEW bias can be advanced by looking at the
systems from this perspective. Such insight can permit one to
develop some intuition about the best way to perform a
NEW calculation for a given physical system. However, it is
very difficult to derive work distributions from a Hamil-
tonian model for a general NEW calculation, as this requires
a detailed treatment of the dynamics of the work process
[16]. Instead we focus on modeling the FEP calculation, for
which we can derive the work distributions from the joint
density of states of theA andB systems.

In the following section we review the neglected-tail
model that we proposed in previous work as a means to

estimate the bias from the work distributions. Then in Sec.
III we present the two Hamiltonian-based models that we
wish to use to study the asymmetric FEP bias. In Sec. IV we
present results demonstrating that the neglected-tail model is
effective in characterizing the bias for these models, and we
examine the behavior of the bias as a function of the param-
eters of the models. We conclude in Sec. V.

II. NEGLECTED-TAIL BIAS MODEL

The neglected-tail model[14,15] can be understood with
reference to Eqs.(3). For theA→B direction[Eq. (3a)], bias
arises from poor sampling the negative tail ofpAsWd, which
contributes greatly to the average because of its multiplica-
tion by the exponentiale−bW. Likewise, for theB→A direc-
tion [Eq. (3b)], the bias results from the failure to sample the
upper values ofpBsWd. Clearly, if pAsWd andpBsWd are not
symmetric(i.e., they differ by more than a simple translation
in W), the bias will not be same for the two directions.

The neglected-tail model for the bias assumes thatall of
the error arises from failure to sample the relevant tail of the
work distribution. In particular, we assume that the NEW
process samples perfectly the work distribution for work val-
ues greater than(for A→B) or less than(for B→A) a limit-
ing work valueW* and that it does not sample any work
values at all beyondW*. The likelihood that a NEW calcu-
lation involving M work measurements will have a limiting
work valueW* is given by the probability distribution

PA
* sW* ; Md = MpAsW* df1 − CAsW* dgM−1,

PB
* sW* ; Md = MpBsW* dfCBsW* dgM−1, s4d

whereCX is the cumulative distribution function

CXsW* d =E
−`

W*

pXsWd, X P sA,Bd. s5d

Upon increasingM, the peak inPA
* will move to more nega-

tive W* and the peak inPB
* will move to more positiveW*.

The bias in the free energy obtained when neglecting the tail
beyondW* is

DF
∧

A→BsW* ; Md − DF = − kT lnF 1

M
e−bsW*−DFd

+ S1 −
1

M
D1 − CBsW* d

1 − CAsW* dG ,

s6ad

DF
∧

B→AsW* ;Md − DF = + kT lnF 1

M
e+bsW*−DFd

+ S1 −
1

M
DCAsW* d

CBsW* dG , s6bd

which is derived using Eq.(2). The expected bias as a func-
tion of sampling length is obtained by averaging the biases
given by Eq.(6) over theW* values distributed according to
Eqs.(4):
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BA→BsMd =E
−`

`

dW* PA
* sW* ; MdfDF

∧

A→BsW* ; Md − DFg,

BB→AsMd =E
−`

`

dW* PB
* sW* ; MdfDF

∧

B→AsW* ; Md − DFg.

s7d

There are a few approximations we can consider from this
point. First we approximate Eq.(6) via

DF
∧

A→BsW* ; Md − DF = − kT lnf1 − CBsW* dg,

DF
∧

B→AsW* ; Md − DF = + kT lnfCAsW* dg. s8d

This form is appropriate forM @1. As another approxima-
tion, we consider that the integral over theW* distribution
[Eq. (7)] may be approximated by the value of the bias at the
mode or mean ofP* sW* d.

Note that Eq.(8) indicates that the bias is characterized by
the area of the conjugate distribution beyondW* [e.g., for
the A→B direction the bias is related to the area ofpBsWd
that is belowW* ]. Thus, if the sampled distribution encom-
passes its conjugate,W* is likely to lie beyond the bulk of
the conjugate distribution and the bias will be small. This
indicates that the bias should be less when sampling the
broader distribution. We will refer to sampling in this direc-
tion as the “insertion” direction, while the direction that in-
volves sampling the narrowerpsWd distribution we will refer
to as “deletion.”(These names derive from the application of
FEP to calculate the chemical potential, which involves the
insertion or deletion of a particle; usually the insertion direc-
tion is characterized by a broader distribution of work val-
ues.) In some cases the widths of the distributions are not so
different such that one direction is clearly “insertion” and the
other “deletion.” For Gaussian work distributions,pAsWd and
pBsWd are both Gaussians with equal variance[this equality
is a consequence of Eq.(2)] and differ only by shifting inW
[11,15]. In this case the bias is independent of the direction
A→B versusB→A, and the “insertion” and “deletion” la-
bels are not meaningful.

III. TWO MODEL SYSTEMS

We now introduce the two model systems that are the
focus of this work. Both models are formed fromN nonin-
teracting particles, with each particle under the influence of a
common single-body potential that differs between theA and
B systems. We can identify a phase(or configuration) space
for these systems, and from this standpoint we can derive
expressions for the work distributions they would exhibit in a
FEP calculation. Although the behavior of each particle is
independent of the others, the bias in the FEP calculation
depends on their collective statistics. This combination of
features of the model and the FEP calculation makes their
analysis tractable but interesting and nontrivial.

A. Independent harmonic oscillators

The first model for consideration is a system ofN inde-
pendent particles under the influence of a harmonic potential
of width and position that differ in the two systems: thus,

UA = o
i=1

N

vAxi
2,

UB = o
i=1

N

vBsxi − x0d2, s9d

wherexi is a coordinate for particlei. The free-energy dif-
ference isDF= 1

2NkT lnsvB/vAd. Increasing the parameterx0

causes the important parts of phase space for the two systems
to move apart. This makes sampling of one system less likely
to encounter configurations important to the other, thereby
increasing the bias symmetrically without affecting the true
free-energy difference. Increasing the parametervA or vB
narrows the important phase space for the corresponding sys-
tem. The more narrowly sampled system will be less likely
to encounter configurations important to the other system,
thus increasing the bias asymmetrically. IncreasingN tends
to exacerbate the bias tendencies imposed by the other pa-
rameters. Thus, by changing the parametersN, vA, vB, and
x0, we can change the degree of the asymmetry of the two
work distributionspAsWd and pBsWd and construct different
bias cases for study. In the Appendix we develop analytic
expressions for the work distributions. The result forpAsWd
is given in the Appendix[Eq. (A13)]. The distributionpBsWd
can be obtained most conveniently via Eq.(2).

B. Two-state discrete model

Next, we consider a case with discrete work distributions.
Here we divide the phase space into two parts, describing
two possible states that a particle can occupy. We designate
state 0 to form a fractionf of the total phase space, while
state 1 occupies the fraction 1−f. SystemA is defined such
that a particle in state 0 has energy«A0, while in state 1 its
energy is«A1. SystemB has energies«B0 and «B1 defined
similarly. The total energy of a given configuration of a col-
lection of N such particles in theA and B systems, respec-
tively, is

UA = n«A0 + sN − nd«A1,

UB = n«B0 + sN − nd«B1, s10d

where n is the number of particles in state 0 in the given
configuration. The partition function for each system is given
as a sum over all values ofn:

QX = o
n=0

N SN

n
D fns1 − fdN−n expf− bUXsndg fX P sA,Bdg

= ffe−b«X0 + s1 − fde−b«X1gN. s11d

The free-energy difference is given by
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DF = − kTN lnF fe−b«B0 + s1 − fde−b«B1

fe−b«A0 + s1 − fde−b«A1
G . s12d

This model could characterize a system of uncoupled mol-
ecules(or spins, perhaps) that can occupy either of two states
(0 or 1), the properties of which are subject to the imposition
of an external field(which is off in systemA and on in
systemB, for example).

The work distributions for this discrete model are easily
related to then distributions, because then value of a con-
figuration is sufficient to specifyW via

Wsnd = UB − UA = ns«B0 − «A0 − «B1 + «A1d + Ns«B1 − «A1d.

s13d

The n values are distributed according to the binomial
distribution

pXsnd = SN

n
DrX

ns1 − rXdN−n, X P sA,Bd, s14d

where rX= fe−b«X0ffe−b«X0+s1− fde−b«X1g−1. Then pXsWd
=pX(nsWd)udn/dWu wherensWd is the inverse of Eq.(13).

The tail distributions are similar to those of continuous
tail distributions, except now we need to account for the
possibility that the extreme value ofn, labeledn*, could be
encountered more than once in a FEP calculation. Thus in-
stead of Eq.(4), we have the probability that the smallest
(largest) value of n is encountered exactlym times in a
calculation:

PA
* sn * ; m;Md = SM

m
DfpAsn * dgmf1 − CAsn * dgM−m,

PB
* sn * ; m;Md = SM

m
DfpBsn * dgmfCBsn * − 1dgM−m,

s15d

where the cumulative distributions areCXsn* d=on=0
n* pXsnd

[the probability corresponding to Eq.(4) is the special case
of m=1]. Correspondingly, them-dependent free energies in
two directions are[cf. Eq. (6)]

DF
∧

A→Bsn * ; m;Md − DF

= − kT lnFm

M
e−bsWsn* d−DFd + S1 −

m

M
D1 − CBsn * d

1 − CAsn * dG ,

s16ad

DF
∧

B→Asn * ; m;Md − DF

= + kT lnFm

M
e+bsWsn* d−DFd + S1 −

m

M
DCAsn * − 1d

CBsn * − 1dG .

s16bd

Finally, the biases for the two directions according to this
implementation of the neglected-tail model are

BA→BsMd = o
n*=0

N

o
m=1

M

PA
* sn * ; m;Md

3fDF
∧

A→Bsn * ; m;Md − DFg,

BB→AsMd = o
n*=0

N

o
m=1

M

PB
* sn * ; m;Md

3fDF
∧

B→Asn * ; m;Md − DFg. s17d

For largeM it is expensive to perform the full sum overm.
Fortunately, in these cases them dependence of the prob-
abilities is sharply peaked, so we may use just a few terms
about the maximum. Them whereP* has its maximum is in
the vicinity of

mmax
A→Bsn * d <

MpAsn * d − f1 − CAsn * dg
f1 − CAsn * dg + pAsn * d

,

mmax
B→Asn * d <

MpBsn * d − CBsn * − 1d
CBsn * − 1d + pBsn * d

. s18d

IV. RESULTS AND DISCUSSION

Let us consider first the model of uncoupled harmonic
particles. Without loss of generality we choosevB.vA; con-
sequently,pAsWd is always wider thanpBsWd andA→B al-
ways represents the “insertion” direction. We have examined
the bias for several values of the model parameters, as sum-
marized in Table I. The bias as calculated by the neglected-
tail model for these cases is presented in Fig. 1 as a function
of sampling amountM. Also shown in the figure are results
of numerical calculations performed to test the validity of the
bias model. Here we conducted simulations in which we
sampled the configurations of the particles, sampling directly
from a Gaussian distribution to get a Boltzmann sample of
configurations for the given system(A or B). For each con-
figuration we evaluated the work in perturbing to the other
system(A→B or B→A) and evaluated the free-energy dif-
ference forM such realizations(up to M =106). This process
was repeated approximately 5000–12 000 times(depending
on N), and the average bias in the free energy over all
M-length samples was evaluated. These results are presented

TABLE I. Summary of parameter sets for the harmonic-model
systems examined in Figs. 1–4. In all cases,b=1 andvA=1.

Case N bvANx0
2 vB/vA x0 bDF

A 20 0.002 2 0.01 6.93

B 20 20 2 1 6.93

C 20 0.002 10 0.01 23.0

D 50 0.005 2 0.01 17.3

E 50 50 2 1 17.3

F 50 0.005 10 0.01 57.6
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as a function ofM with the model data. The model agrees
perfectly with the numerical results for the range ofM tested,
and it is reasonable to expect that the agreement would con-
tinue into the range of largerM shown in the figure. Discrep-
ancies arise only for small values of the bias(below the scale
of the figure), which is the range in which the variance of the
data is greater than the(square) error due to the bias. Thus
the model is applicable in the cases where the primary source
of error is the bias rather than the noise. It should be noted
that for the deletion calculations the plot presents the nega-
tive of the bias. It is well known that the biases in the two
directions are of opposite sign, and the present results are
consistent with this expectation.

Figure 2 shows the insertion and deletion work-
distribution pairs for case C in Table I, together with their

tail-sampling distributions according to Eq.(4) at M =103

andM =106. At M =106, W* in A→B (insertion) direction is
already in the middle ofpBsWd, while W* in the B→A (de-
letion) direction is still on the near edge ofpAsWd. The
neglected-tail model indicates that theW* distribution must
peak on the other side of the complementary work distribu-
tion for the bias to be small. One can see how this happens
first for the insertion direction asM is increased. Figure 3
presents work distributions for the different cases presented
in Table I and Fig. 1. The work distributionpAsWd is always
to the right simply because we choose to defineW as UB
−UA; it is always the wider distribution because we select the
systemA such thatvBùvA.

Considering now the behavior of the bias, we see in Fig. 1
that the bias in the insertion direction decreases much more
quickly than the bias in the deletion direction. This supports
our contention that better results are obtained when sampling
the system having the wider work distribution. Comparison
with Fig. 3 shows that the asymmetry in the bias connects to
the difference in the width of the work distributions and(un-
surprisingly) that the bias decreases more slowly as the dis-
tributions become farther apart. In some situations the bias in
the deletion direction shows little sign of diminishing even
for very large amounts of sampling, while for the same case
the insertion bias becomes small after comparatively little
sampling. Case C is such an example. It can be noted that for
this pair of systems,x0 is nearly zero andvB/vA is large.
Thus the important phase space of theB system is smaller

FIG. 1. Bias(in absolute value) in the free-energy difference for
the harmonic model, as a function of the number of free-energy
perturbations performed. Circles describe the results of numerical
calculations(which were performed only up toM =106), and lines
are given by the neglected-tail bias model. Letters describe different
model systems as keyed in Table I. Uppercase letters(and solid
lines) are for the insertion directionsA→Bd, and lowercase letters
(dashed lines) are for the deletion directionsB→Ad.

FIG. 2. Work distributions for case C defined in Table I. Also
shown are the extreme-work distributions as given by Eq.(4) for
two values ofM.

FIG. 3. Work distributions for different harmonic-model sys-
tems as keyed in Table II and with FEP bias as shown in Fig. 1. The
abscissa is the work(in units of kT). The rightmost distribution is
pAsWd, and the leftmost distribution ispBsWd. All curves are nor-
malized to unity.
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than that of theA system, but it is not displaced from it. This
is an example of the “subset” phase-space relation discussed
in previous work[3,12]. In this situation a single-stage FEP
calculation can provide a useful result, but only if applied in
the right direction. On the other hand, in some cases the bias
in both directions is slow to decay(although insertion still
has advantage) and a single-stage calculation cannot provide
a good result for any feasible amount of sampling. Cases E
and F provide examples of this situation. In case E,x0 is
large, and any phase-space overlap is not enough to form a
subset relation; in case F,x0 is small, butN is large and the
important phase space ofB is much too small a part ofA to
permit it to be sampled well in anA→B perturbation. In
these cases a multistage approach would be needed to obtain
good results.

We would also like to know the performance of the ap-
proximated bias model by using Eq.(6) or Eq. (8) with W*
to be the mean or mode ofP* distributions, because these
approximations simplify the calculations considerably. In
Fig. 4 we make these comparisons, which show that using
Eq. (6) with the mean value ofP* is good enough to ap-
proximate the biases for this harmonic model, while Eq.(8)
works well only for the large bias values. Also it is better to
use the mean value ofP* instead of the mode value, because
theP* distribution itself is asymmetric(it has a longer tail on
one side than the other side), so the mean is more represen-
tative than the mode.

The neglected-tail model and Eqs.(4) and(6), in particu-
lar, indicate that the bias is entirely determined(at least at
large M) from the work distributionspXsWd, either directly
or through the cumulative distributionsCXsWd. Thus we can
consider the behavior in terms of the groups that appear in
the expressions derived above for the work distributions. For

the harmonic model, if we consider the bias scaled by the
temperaturesbWd, then the only independent groups appear-
ing in Eq. (A13) for pAsWd are bvANx0

2, vB/vA, and N.
Figure 5 provides a parametric study of the shape of the
work distributions in terms of these groups(see Table II).
The overlap between the distributions decreases as any of
these parameters are increased, but each has a different effect
on the nature of the phase-space overlap of theA and B
systems[3,12]. The groupbvANx0

2 promotes separation of
the important phase spaces, while the ratiovB/vA promotes
the diminishing of theB-important space relative to that for
A, keeping the separation fixed. From the standpoint of the
work distributions alone this distinction is difficult to make.
The cases shown in the figure cover a wide range of behav-
iors of the work distributions, and their connection to the
Hamiltonian-based model may prove useful in interpreting
them. Such insight can guide the formulation of multistage
NEW methods for application in a given situation.

We turn now to the two-state discrete model, with param-
eters chosen as summarized in Table III. For these cases Fig.
6 presents the bias as a function of sampling length, accord-
ing to both the neglected-tail model and numerical calcula-
tions of the type used in Fig. 1 for the harmonic model(but
now using 20 000 – 40 000 free-energy calculations to com-
pute the average bias). Again the agreement is excellent for
the bias values shown in the figure, which represents the
range where the bias is more of a problem than the stochastic
error (noise). As in the case of the harmonic model, the bias
in the insertion direction decays significantly more quickly
than that in the deletion direction. One might note that in
both models, at smallM, the deletion bias is often smaller
than that for insertion. In these cases, however, the bias is
still quite large, and the results from neither direction could
be considered useful. The faster decay of the insertion bias is
a much more useful feature, as it permits the insertion calcu-
lation to yield a useful result with considerably smaller sam-
pling amounts. Work distributions are presented in Fig. 7 for
some of the systems described. The relation between the
work distributions and the bias is qualitatively similar to that
observed for the harmonic model.

V. CONCLUSIONS

We have developed formulas for the work distributions
for two types of Hamiltonian-based model systems. We have
applied the neglected-tail bias model for nonequilibrium
work calculations, and through numerical studies we have
demonstrated that the model is effective in characterizing the
bias in these systems. We have shown that the models exhibit
asymmetric bias, in that the magnitude of the bias is larger
when the perturbation is applied in one direction versus the
other. The neglected-tail model indicates that the smaller bias
is obtained when sampling the system with the broader work
distribution, perturbing into the system with the narrower
distribution.

One of our interests in presenting and examining these
models is in helping us to understand the relation between
the performance of a NEW or FEP calculation and the nature
of the overlap of the important phase spaces of the two sys-

FIG. 4. Demonstration of approximations applied to the
neglected-tail model. Circles are the numerical calculations as pre-
sented in Fig. 1(including both insertion and deletion). Solid lines
use Eq.(6), and dashed lines use Eq.(8), both withW* given by the
mean ofPX

* sW* d [instead of integrating overW* as indicated by
Eq. (7)].
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FIG. 5. Work distributions for different harmonic-model systems as keyed in Table II. The abscissa is the work(in units of kT). The
rightmost distribution ispAsWd, and the leftmost distribution ispBsWd. All curves are normalized to unity. Figures are arranged such that
those more to the right represent largerbvANx0

2 and those further down(for a givenN) represent largervB/vA. First three rows areN=5,
and last two rows areN=50.
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tems of interest. The models presented here are defined in
terms of particles sampling a phase space, so they can be
studied from this perspective. We think this point of view can
be helpful in choosing and formulating multistage methods
that can greatly aid in obtaining accurate free-energy differ-
ences for a minimum amount of sampling. Investigations in
this direction are currently underway.
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APPENDIX

Here we derive the instantaneous-change work distribu-
tions for the system of uncoupled harmonic oscillators. We

begin by deriving the joint density of states for the energies
of the A and B systems. Thus we defineVsUA,UBd as the
probability density for configurations that have energyUA in
the A system and at the same time have energyUB in the B
system. This distribution can be represented via integrals of
d functions:

VsUA,UBd =E
N

dxNdSUA − vAo
i=1

N

xi
2D

3dSUB − vBo
i=1

N

sxi − x0d2D . sA1d

As a notational convenience we introduce the scaled energies

ŨA =
UA

vANx0
2, ŨB =

UB

vBNx0
2 , sA2d

then

VsUA,UBd = svAvBd−1sNx0
2dN/2−2E

N

dx̃NdSŨA − o
i=1

N

x̃i
2D

3dSŨB − o
i=1

N

sx̃i − N−1/2d2D . sA3d

The d functions are implemented using the integral identity

TABLE II. Summary of parameter sets for the harmonic-model
systems examined in Fig. 5. In all casesb=1 andvA=1.

Case N bvANx0
2 vB/vA x0 DF

A 5 4 1 0.894 0

B 5 50 1 3.16 0

C 5 0 2 0 1.73

D 5 4 2 0.894 1.73

E 5 50 2 3.16 1.73

F 5 0 10 0 5.76

G 5 4 10 0.894 5.76

H 5 50 10 3.16 5.76

I 50 0 2 0 17.3

J 50 4 2 0.283 17.3

K 50 50 2 1 17.3

L 50 0 10 0 57.6

M 50 4 10 0.283 57.6

N 50 50 10 1 57.6

TABLE III. Summary of parameter sets for the discrete-model
systems examined in Figs. 6 and 7. In all casesb=1 and «A0

=«B1=0.

Case N f «A1 «B0 DF

A 50 0.3 0.3 0.5 −3.73

B 50 0.3 0 2 15.0

C 50 0.3 0 5 17.7

D 50 0.3 3 5 −37.0

E 50 0.9 0.3 0.5 20.5

F 50 0.9 0 2 75.3

G 20 0.3 0 2 6.01

H 20 0.3 0 5 7.08

I 20 0.4 0.1 50 9.04

FIG. 6. Bias(in absolute value) in the free-energy difference for
the discrete model, as a function of the number of free-energy per-
turbations performed. Circles describe the results of numerical cal-
culations, and lines are given by the neglected-tail bias model. Let-
ters describe different model systems as keyed in Table III.
Uppercase letters(and solid lines) are for the insertion direction
sA→Bd, and lowercase letters(dashed lines) are for the deletion
direction sB→Ad.
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dsxd =
1

2pi
E

C

dzexpsxzd, sA4d

where the integral is performed along a vertical contour in
the complex plane, with an infinitesimal but nonzero positive
real component. Substituting in Eq.(A3),

VsUA,UBd =
svAvBd−1sNx0

2dN/2−2

s2pid2

3 E
N

dx̃NE
CA

dzA expfzAsŨA − o x̃i
2dg

3E
CB

dzB expfzBsŨB − o sx̃i − N−1/2d2dg .

sA5d

We now exchange the order of integration and complete the
integrals over the coordinates. Then,

VsUA,UBd = svAvBd−1sNx0
2dN/2−2 pN/2

s2pid2

3 E
CA

dzAE
CB

dzB expszAŨAd

3expszBŨBdexpS−
zAzB

zA + zB
DszA + zBd−N/2.

sA6d

We definez such thatzB=z−zA and complete the integral
over zA:

VsUA,UBd = svAvBd−1sNx0
2dN/2−2psN+1d/2

s2pd2i

3 E
C

dzexpF z

4
fŨA,maxsŨBd − ŨAg

3fŨA − ŨA,minsŨBdgGz−sN−1d/2, sA7d

where

FIG. 7. Work distributions for different discrete-model systems as keyed in Table III and with FEP bias as shown in Fig. 6. The abscissa
is the work(in units of kT). The rightmost distribution(using thick lines) is pAsWd, and the leftmost distribution(thin lines) is pBsWd. All
distributions are normalized to unity.
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ŨA,minsŨBd ; sŨB
1/2 − 1d2,

ŨA,maxsŨBd ; sŨB
1/2 + 1d2, sA8d

which yields

VsUA,UBd = svAvBd−1sNx0
2dN/2−2 psN−1d/2

2G„sN − 1d/2…

3H1

4
fŨA,maxsŨBd − ŨAgfŨA

− ŨA,minsŨBdgJsN−3d/2

. sA9d

The univariate density of states can be recovered by integra-

tion overŨA:

VsUBd = Nx0
2vAE

ŨA,min

ŨA,max
VsŨA,UBddŨA =

sp/vBdN/2

GsN/2d
UB

N/2−1,

sA10d

which is consistent with the previously established formula
for the density of states of aN uncoupled harmonic oscilla-
tors [17].

To obtain the work distribution that would be observed
when sampling theA ensemble, we need instead the joint
density of states forUA and W=UB−UA. This is easily ob-
tained through manipulation of Eq.(A9), yielding

VWsUA,Wd = svAvBd−1sNx0
2dN/2−2 psN−1d/2

2G„sN − 1d/2…

3F1

4
S1 −

vA

vB
D2

fŨA,maxsWd − ŨAg

3fŨA − ŨA,minsWdgGsN−3d/2

, sA11d

where

ŨA,minsWd ; S 1 −ÎDsWd
s1 − vA/vBd

D2

, sA12ad

ŨA,maxsWd ; S 1 +ÎDsWd
s1 − vA/vBd

D2

, sA12bd

DsWd ;
vA

vB
+

W

vBNx0
2S1 −

vA

vB
D . sA12cd

Then upon integration over the Boltzmann-weighted energies
of systemA and normalization, we obtain

pAsWd =E
UA,minsWd

UA,maxsWd

VWsUA,Wde−bUAdUAYE
Wmin

`

dWE
UA,minsWd

UA,maxsWd

VWsUA,Wde−bUAdUA

=
bvA/vB

1 − vA/vB
fDsWdgsN−2d/4 expS−

bvANx0
2f1 + DsWdg

s1 − vA/vBd2 DIN/2−1S2bvANx0
2ÎDsWd

s1 − vA/vBd2 D , sA13d

whereIkszd is the Bessel function andDsWd is as defined in
Eq. (A12c); the cumulative distributions are determined by
numerical integration. Two special cases arise: whenx0
=0 and whenvA=vB, respectively. Whenx0=0, the energy
of one system uniquely determines the energy of the other,
andUA andUB are not independent in the density of states.
Thus

VsUA,UBd =
1

vAvB

pN/2

GsN/2dSUB

vB
DN/2−1

dSUA

vA
−

UB

vB
D

sx0 = 0d, sA14d

and for this case

pAsWd = bS vA/vB

1 − vA/vB
DN/2sbWdN/2−1

GsN/2d
expS−

vA/vB

1 − vA/vB
bWD ,

CAsWd = 1 −

gSN

2
,

vA/vB

1 − vA/vB
WD

GSN

2
D , sA15d

where gsn,zd is the incomplete gamma function. For the
other special case, the work distribution is Gaussian:

pAsWd = S b

4pNx0
2v
D1/2

expF− b
sW− vNx0

2d2

4vNx0
2 G

sv ; vA = vBd. sA16d

This case was treated in some detail in previous work[15].
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