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Asymmetric bias in free-energy perturbation measurements using two Hamiltonian-based models
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We present two model systems that are suitable for the study of bias in free-energy pertuibatpn
calculations which are performed in molecular simulations. The models exhibit the asymmetry that is some-
times seen in these calculations, in which the magnitude of the bias is greater when the calculation is performed
in one direction(A— B, sampling systenA and perturbing into systerB) versus the othe(B— A). Both
models are formulated as a systemNbiindependent particles, each sampling a space in the presence of a
one-body field that is different for th& and B systems. In one model the field is a harmonic potential. The
other model is discrete, such that each particle can be at one of two pmirgkate$ of different energy. The
neglected-tail bias model is applied to each system to estimate the average bias as a function of the amount of
FEP sampling, and numerical calculations are performed to show that the bias model is effective. We show that
the bias is significantly smaller when sampling is performed on the system having a broader work distribution
(we designate this direction “insertionéompared to the bias for FEP calculations that sample the system with
a narrower distributiorf“deletion”).
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[. INTRODUCTION due to the difficulty of evaluating the free energy accurately
Free-energy perturbatioFEP) is a molecular simulation or these model systems. _
method for evaluating free-energy differendés It entails In these systems and many others of interest, the problems

the simulation of one system to measure an ensemble avefvolved in calculating the free energy have common origins.
age involving energy changes upon instantaneous perturb&ampling must be performed in a way that both systems
tion into a second system. The syste(fabeledA and B) involved in the free-energy difference are sampled well. Fail-
may differ in many ways, such as the thermodynamic state odre to sample well does not always give obviously wrong
the definition of their Hamiltonians. The importance of FEPresults and, consequently, it is as important to identify the
methods derives from the central role that free energy playpresence of a sampling problem as it is to develop ways to
in characterizing the equilibrium of a systgi?]. Measure- overcome it. Progress can be made by working with simple,
ments of free-energy differences can be used to assess thgalytically tractable models that exhibit the essential fea-
relative stability of the two systems, thereby furthering un-tures that give rise to difficulties found in real free-energy
derstanding of their behavior and enabling their intelligentcalculations and measurements. In studying these models we
manipulation. can develop metrics that signal the presence of a problem
Many examples can be given. Evaluation of the solubilitywith the calculation and that can be used to identify or for-
of a gas or solid in a liquid is fundamental to many applica-mulate methods that are effective in a given situation. Pres-
tions, and its conduct by molecular simulation involves theently there are no such models available for this purpose, and
evaluation of the chemical potential of one solute moleculghis work aims to address this deficiency.
at infinite dilution in the liquid. This requires a free-energy ~ The working equation for a FEP calculation[5
calculation for the process in which the molecule is added to _ _ _
(or removed from the solvent. Particle removal is well exp(= SAF) = (exp(= BW)a, @
known to perform poorly in this application, but particle in- whereAF=Fz—F, is the free-energy differencg@=1/kT is
sertion is not without its complications eithf3]. The best the reciprocal temperature in energy units, &g the work
way to proceed for a given system is not always obvious, anthvolved in perturbing from system into systemB for a
considerable extra effort can be needed to ensure a goagven configuration. In terms of the molecular potential en-
result. The process could be improved with better underergyU, W=Ug—U,. Subscripts indicate values for tideand
standing of the nature of the calculation. As another exampleB systems, respectively. The FEP method is a special case of
assessment of the relative stability of crystal polymorj#fjs  the more general nonequilibrium wo(KEW) formalism of
is an important problem from many standpoints: scientifi-Jarzynski[6]. The NEW formalism expresses free-energy
cally, technologically, and economically. The question ofdifferences in terms of an average of the form of &g, but
relative stability can in principle be assessed by a compariinterpreting the average as one over an ensemble of initial
son of the free energies of the competing forms. In practiceonditions and permitting the transformation to be performed
the true free energy is not considered when molecular modat any rate. FEP is an important special case because it can
eling is applied to this question. Instead, crude approximabe implemented while sampling the “initial” system exclu-
tions such as neglect of entropy are applied. The inability tesively, so the free-energy calculation need not disturb the
describe polymorphic behavior reliably is, at least in part,collection of other averages. Also, because FEP does not
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require the lengthy calculations involved in the work processestimate the bias from the work distributions. Then in Sec.

and reequilibrating afterwards, usually many more FEP meaHl we present the two Hamiltonian-based models that we

surements can be performed than is possible in the momish to use to study the asymmetric FEP bias. In Sec. IV we

general NEW case. On the other hand, to the extent that theresent results demonstrating that the neglected-tail model is
NEW calculation is performed reversibly, fewer measure-effective in characterizing the bias for these models, and we
ments are required to obtain a good estimate of the averagexamine the behavior of the bias as a function of the param-
NEW measurements are also of interest because they can bters of the models. We conclude in Sec. V.

performed on real systems in the laboratpry.

Work distributions play a central role in the study and
application of NEW calculation@ncluding the FEP special
cas@ [6,8]. The distributionp,(W) is the probability density The neglected-tail modglLl4,15 can be understood with
for observing the work valu®/ when performing the trans- reference to Eqg3). For theA— B direction[Eq. (38)], bias
formationA— B when beginning from an equilibratédsys-  arises from poor sampling the negative tailgfW), which
tem. Likewise pg(W) is the probability density for observing contributes greatly to the average because of its multiplica-
work -W for a B— A transformationiwe defineW indepen-  tion by the exponentiad ™", Likewise, for theB— A direc-
dently of the direction, so for FEP it is always—U,). The  tion [Eqg.(3b)], the bias results from the failure to sample the
two conjugate work distributions are relatg®]9]: upper values ofg(W). Clearly, if pa(W) and pg(W) are not

oW _BAF symmetric(i.e., they differ by more than a simple translation
PAWE= pg(Wye . @ i W), the bias will not be same for the two directions.
The free-energy difference is given from the distributions via The neglected-tail model for the bias assumes #fiadf
o the error arises from failure to sample the relevant tail of the
exp(- gAF)zf pa(W)e PVdw, (33  Work distribution. In particular, we assume that the NEW
—o process samples perfectly the work distribution for work val-
ues greater tha(for A— B) or less thar{for B— A) a limit-
* ing work valueW* and that it does not sample any work
exp(+ BAF) :f pa(Wedw. (30 values at all beyondV*. The likelihood that a NEW calcu-
e lation involving M work measurements will have a limiting
A severe problem with the use of FEP calculations and NEWwvork valueW* is given by the probability distribution
calculations, in general, is the strong tendency of the aver- « e M-1
ages to exhibit bias or inaccurag}0,11]. In some cases it is Pa(W* M) = Mpa(W* )[1 = Ca(W*)J*,
possible for repeated measurements to produce the same in- .
correct result, so it can be difficult to detect the inaccuracy Pa(W*; M) = Mpg(W* )[Cg(W* )M, 4
from the s_imulation (_jata alone. Moreover, the bias is OﬁethereCX is the cumulative distribution function
asymmetric in magnitude, meaning that a NEW calculation
performed by averaging— B work processes is different we
from the bias obtained using— A processe$3,12-14. Cx(W*) :f px(W),  Xe (AB). (5)

In previous studies we have examined this bias, and most -
recently we have considered it for the special case in whicupon increasingM, the peak inP, will move to more nega-
the distribution of work values follows a Gaussian fofs].  tive W* and the peak irPg will move to more positiven*.
However, the Gaussian-work model is incapable of characThe bias in the free energy obtained when neglecting the tail
terizing asymmetric bias. Our interest in the present work isheyondW* is
to introduce models that can capture this feature of NEW
calculation_s.. We are interested in particular in devglop@ng AF 5 g(W* M)—AFz—kTIn[i ~B(Wr-AF)
and examining models that are based on a Hamiltonian, M
rather than one that is defined directly in terms of the work (

IIl. NEGLECTED-TAIL BIAS MODEL

distributions. A Hamiltonian-based model is defined on a

. 11)%}

phase space, and we think that basic understanding of the M/ 1-Ca(W*)
nature of the NEW bias can be advanced by looking at the (6a)
systems from this perspective. Such insight can permit one to

develop some intuition about the best way to perform a 0 1

NEW calculation for a given physical system. However, it is AFg A(W':M)-AF = + kTIn[— A= AF)

very difficult to derive work distributions from a Hamil- M

tonian model for a general NEW calculation, as this requires 1\ Ca(W*)

a detailed treatment of the dynamics of the work process ( —M>m , (6b)

[16]. Instead we focus on modeling the FEP calculation, for
which we can derive the work distributions from the joint which is derived using Eq2). The expected bias as a func-
density of states of th& andB systems. tion of sampling length is obtained by averaging the biases

In the following section we review the neglected-tail given by Eq.(6) over theW* values distributed according to
model that we proposed in previous work as a means t&gs.(4):
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* . O A. Independent harmonic oscillators
- * * . * - —
Ba—s(M) J_w AW* PA(W* s M)[AFA_g(W* ; M) = AF], The first model for consideration is a systemMfinde-
pendent particles under the influence of a harmonic potential
. . of width and position that differ in the two systems: thus,
Bg_.a(M) :f dW* PE(W* ; M)[AFg _A(W* ;M) = AF]. N
- Ua=2 oaXt,
(7) =1
There are a few approximations we can consider from this N
point. First we approximate E@6) via Ug= 2, wg(X — %)%, (9)
i=1
O
AFp_g(W* ;M) = AF ==KTIn[1 -Cg(W* )], wherex; is a coordinate for particle. The free-energy dif-
ference isAFz%NkTIn(wB/wA). Increasing the parameteg
O causes the important parts of phase space for the two systems

AFg A(W* ;M) = AF = +KTIn[CA(W*)]. (8)  tomove apart. This makes sampling of one system less likely
to encounter configurations important to the other, thereby
This form is appropriate foM>1. As another approxima- increasing the bias symmetrically without affecting the true
tion, we consider that the integral over ti¢ distribution ~ free-energy difference. Increasing the parameigror wg
[Eq.(7)] may be approximated by the value of the bias at theharrows the important phase space for the corresponding sys-
mode or mean oP* (W*). tem. The more narrowly sampled system will be less likely
Note that Eq(8) indicates that the bias is characterized byt0 encounter configurations important to the other system,
the area of the conjugate distribution beyontl [e.g., for ~ thus increasing the bias asymmetrically. Increadihgends
the A— B direction the bias is related to the areapafw)  t0 exacerbate the bias tendencies imposed by the other pa-
that is belowW*]. Thus, if the sampled distribution encom- rameters. Thus, by changing the paramebérss,, wg, and
passes its conjugatsy* is likely to lie beyond the bulk of X0 We can change the degree of the asymmetry of the two
the conjugate distribution and the bias will be small. ThisWork distributionsp,(W) and pg(W) and construct different
indicates that the bias should be less when sampling thBias cases for study. In the Appendix we develop analytic
broader distribution. We will refer to sampling in this direc- expressions for the work distributions. The result fatW)
tion as the “insertion” direction, while the direction that in- is given in the AppendiXEg. (A13)]. The distributionpg(W)
volves sampling the narrowg(W) distribution we will refer ~ can be obtained most conveniently via E2).
to as “deletion.”(These names derive from the application of
FEP to calculate the chemical potential, which involves the B. Two-state discrete model
insertion or deletion of a particle; usually the insertion direc-
tion is characterized by a broader distribution of work val-
ues) In some cases the widths of the distributions are not s
different such that one direction is clearly “insertion” and the

other “deletion.” For Gaussian work distributioms,(W) and : . . X
: : : : - state 1 occupies the fraction I-SystemA is defined such
Ps(W) are both Gaussians with equal variarjtes equality that a particle in state 0 has energ,, while in state 1 its

is a consequence of E(R)] and differ only by shifting inW enerav is SvstemB has eneraies.. and defined
[11,15. In this case the bias is independent of the direction”, 'Igyl Sﬁl' y | ; 191850 e Bl ¢ |
A— B versusB—A, and the “insertion” and “deletion” la- >'miarly. The total energy of a given configuration of a col-
bels are not meani’ngful lection of N such particles in thé and B systems, respec-

tively, is

Next, we consider a case with discrete work distributions.
4lere we divide the phase space into two parts, describing
two possible states that a particle can occupy. We designate
state 0 to form a fractiori of the total phase space, while

lIl. TWO MODEL SYSTEMS Ua=nepg+ (N-n)epy,

We now introduce the two model systems that are the U = + (N 10
focus of this work. Both models are formed fraxhnonin- g=Negy+ (N—nN)eg, (10

teracting particles, with each particle under the influence of § heren is the number of particles in state 0 in the given
common single-body potential that differs betweenArend  ¢onfiguration. The partition function for each system is given

B systems. We can identify a pha&® configuration space 55 5 sum over all values of
for these systems, and from this standpoint we can derive

expressions for the work distributions they would exhibit in a N /N
FEP calculation. Although the behavior of each particle isQx = > ( )f“(l -H)NMexd— BUx(N)] [X € (A,B)]
independent of the others, the bias in the FEP calculation  n=0

depends on their collective statistics. This combination of  —[fgexo + (1 - f)eBexa]V, (11)
features of the model and the FEP calculation makes their
analysis tractable but interesting and nontrivial. The free-energy difference is given by
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fePero + (1 — f)e Feme TABLE I. Summary of parameter sets for the harmonic-model

AF =—-kTNIn fePerot (L—fePom | (12)  systems examined in Figs. 1-4. In all cas@s,1 andw,=1.

This model could characterize a system of uncoupled mol- Case N BN wpl wp X BAF
eculeg(or spins, perhapghat can occupy either of two states

(0 or 1), the properties of which are subject to the imposition g ig 0'282 ; 0'101 :j;
of an external field(which is off in systemA and on in )
systemB, for example. c 20 0.002 10 0.01 23.0
The work distributions for this discrete model are easily D 50 0.005 2 0.01 17.3
related to then distributions, because thevalue of a con- E 50 50 2 1 17.3
figuration is sufficient to specifyV via F 50 0.005 10 0.01 57.6
WI(n) =Ug—Ux=n(ego~ a0~ B2+ €a1) + N(eg1 — £a1)-
(13 % % X
. . N Ba_s(M) = Pa(n*;m;M)
The n values are distributed according to the binomial AR =0 m=1 A
distribution 0
N X[AFA*}B(n* ,m,M)_AF],
n) = ryL-rN ™", Xe (AB), 14
px(>(n)x< 9 c(AB), (14 .
— * * . .
where ry=fefexq[fePexo+(1-f)ePexai]™t. Then py(W) Be—aM) = E‘O El Pe(n ™ m;M)
=px(n(W))|dn/dW wheren(W) is the inverse of Eq(13). .
The tail distributions are similar to those of continuous X[AFg_A(N* ;m;M) — AF]. (17)

tail distributions, except now we need to account for the

possibility that the extreme value af labeledn*, could be  For largeM it is expensive to perform the full sum over.
encountered more than once in a FEP calculation. Thus irFortunately, in these cases the dependence of the prob-
stead of Eq.(4), we have the probability that the smallest abilities is sharply peaked, so we may use just a few terms
(largesj value of n is encountered exactlyn times in a  about the maximum. The whereP* has its maximum is in
calculation: the vicinity of

B ey Mpa(n*) —[1-Ca(n*)]
)[pA<n*>]m[1—cA<n*>]M‘m, Toac (0" = T o 1% ™)

* M
PA(n*;m;M)=<
m

Mpg(n*) - Cg(n*-1)
. M _ E-An*) = . 18
PB(n*;m;M)=(m)[p3(n* JITCa(n* - 1™, Mrax (M) = v~ 1) + pg(n*) (18)
(15)
where the cumulative distributions a@y(n*)== px(n) IV. RESULTS AND DISCUSSION

[the probability corresponding to E(4) is the special case
of m=1]. Correspondingly, then-dependent free energies in
two directions ardcf. Eq. (6)]

Let us consider first the model of uncoupled harmonic
particles. Without loss of generality we choasg> w,; con-
sequentlypa(W) is always wider tharpg(W) andA— B al-

0 ways represents the “insertion” direction. We have examined
AF,_g(n*;m;M) - AF the bias for several values of the model parameters, as sum-
m m\1-Ca(n*) marized in Table I. The bias as calculated by the neglected-
=- kTm{_e-B(W(n*)-AF) + (1 - —)L], tail model for these cases is presented in Fig. 1 as a function
M M/1-Caln*) of sampling amounM. Also shown in the figure are results

(168 of numerical calculations performed to test the validity of the
bias model. Here we conducted simulations in which we
0 sampled the configurations of the particles, sampling directly
AFg A(N*;m;M) - AF from a Gaussian distribution to get a Boltzmann sample of
. configurations for the given syste¢A or B). For each con-
M]_ figuration we evaluated the work in perturbing to the other
Ce(n*-1) system(A— B or B— A) and evaluated the free-energy dif-
(16b) ference forM such realizationgup toM=1CF). This process
was repeated approximately 5000-12 000 tirteepending
Finally, the biases for the two directions according to thison N), and the average bias in the free energy over all
implementation of the neglected-tail model are M-length samples was evaluated. These results are presented

=+ kTIn{mleﬁ(W(”*)‘AF) + (1 - m)
M M
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FIG. 1. Bias(in absolute valugin the free-energy difference for
the harmonic model, as a function of the number of free-energy
perturbations performed. Circles describe the results of numerica
calculations(which were performed only up tM=10%), and lines
are given by the neglected-tail bias model. Letters describe differen T T T ; 7 T 7
model systems as keyed in Table |. Uppercase leti@nsl solid 0 50 100 150 200 o0 100 200 300
lines) are for the insertion directiofA— B), and lowercase letters
(dashed linesare for the deletion directio(B— A).

FIG. 3. Work distributions for different harmonic-model sys-
tems as keyed in Table Il and with FEP bias as shown in Fig. 1. The
as a function ofM with the model data. The model agrees abscissa is the workin units of kT). The rightmost distribution is
perfectly with the numerical results for the rangeMbtested,  pa(W), and the leftmost distribution ipg(W). All curves are nor-
and it is reasonable to expect that the agreement would corralized to unity.
tinue into the range of largévl shown in the figure. Discrep-
ancies arise only for small values of the biaslow the scale tail-sampling distributions according to E¢4) at M=10°
of the figurg, which is the range in which the variance of the andM=10°. At M=1°, W* in A— B (insertion direction is
data is greater than thesquare error due to the bias. Thus already in the middle opg(W), while W* in the B— A (de-
the model is applicable in the cases where the primary sourdetion) direction is still on the near edge gi\(W). The
of error is the bias rather than the noise. It should be notedeglected-tail model indicates that tki¢ distribution must
that for the deletion calculations the plot presents the neggpeak on the other side of the complementary work distribu-
tive of the bias. It is well known that the biases in the twotion for the bias to be small. One can see how this happens
directions are of opposite sign, and the present results af@st for the insertion direction aM is increased. Figure 3
consistent with this expectation. presents work distributions for the different cases presented

Figure 2 shows the insertion and deletion work-in Table | and Fig. 1. The work distributiopy(W) is always
distribution pairs for case C in Table |, together with theirto the right simply because we choose to defilieas Ug
—U,, itis always the wider distribution because we select the

0.30 e 103:': 10° e PEL(WEM) systemA such thatwg=wa. _ o
025 ] I - P (WM Considering now the behavior of the bias, we see in Fig. 1
— (W), pa(W) the_lt the bias in thg insertion dlre_ct|on_dec.reases.much more
0.20 non A 2 quickly than the bias in the deletion direction. This supports
g 0.15 - our contention that better' results are 'obt_ain(_ad when sampling
b b B (W*M), M=10° th_e sy_stem having the wider work d|s_tr|but|0r_1. Comparison
0.10 ' / AV with Fig. 3 shows that the asymmetry in the bias connects to
i the difference in the width of the work distributions auh-
0.05 . PAW) surprisingly that the bias decreases more slowly as the dis-
0.00-_ A tributions become farther apart. In some situations the bias in
5'0 T 160 T the deletion direction shows little sign of diminishing even
W/KT for very large amounts of sampling, while for the same case

the insertion bias becomes small after comparatively little

FIG. 2. Work distributions for case C defined in Table I. Also sampling. Case C is such an example. It can be noted that for

shown are the extreme-work distributions as given by @ .for

two values ofM.

this pair of systemsy, is nearly zero andvg/ w, is large.
Thus the important phase space of Biesystem is smaller
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the harmonic model, if we consider the bias scaled by the
temperaturdé 8W), then the only independent groups appear-
ing in Eq. (A13) for pa(W) are BwaNxX3, wg/wa, and N.
Figure 5 provides a parametric study of the shape of the
work distributions in terms of these groupsee Table ).
The overlap between the distributions decreases as any of
these parameters are increased, but each has a different effect
on the nature of the phase-space overlap of Ahand B
systems[3,12. The group,li'coANxfJ promotes separation of
the important phase spaces, while the raijd w, promotes
the diminishing of theB-important space relative to that for
A, keeping the separation fixed. From the standpoint of the
work distributions alone this distinction is difficult to make.
The cases shown in the figure cover a wide range of behav-
iors of the work distributions, and their connection to the
= Hamiltonian-based model may prove useful in interpreting
6 them. Such insight can guide the formulation of multistage
NEW methods for application in a given situation.
We turn now to the two-state discrete model, with param-
FIG. 4. Demonstration of approximations applied to the eters chosen as summarized in Table Ill. For these cases Fig.
neglected-tail model. Circles are the numerical calculations as pred Presents the bias as a function of sampling length, accord-
sented in Fig. including both insertion and deletiprSolid lines NG to both the neglected-tail model and numerical calcula-
use Eq(6), and dashed lines use H@), both withw* given by the  tions of the type used in Fig. 1 for the harmonic modwit
mean of Py(W*) [instead of integrating ovew* as indicated by ~ now using 20 000 — 40 000 free-energy calculations to com-
Eq. (7)]. pute the average bipsAgain the agreement is excellent for
the bias values shown in the figure, which represents the
than that of theA system, but it is not displaced from it. This range where the bias is more of a problem than the stochastic
is an example of the “subset” phase-space relation discussedror (noise. As in the case of the harmonic model, the bias
in previous work[3,12). In this situation a single-stage FEP in the insertion direction decays significantly more quickly
calculation can provide a useful result, but only if applied inthan that in the deletion direction. One might note that in
the right direction. On the other hand, in some cases the bid®th models, at smaM, the deletion bias is often smaller
in both directions is slow to decagalthough insertion still than that for insertion. In these cases, however, the bias is
has advantageand a single-stage calculation cannot providestill quite large, and the results from neither direction could
a good result for any feasible amount of sampling. Cases [Be considered useful. The faster decay of the insertion bias is
and F provide examples of this situation. In casexfjs  a much more useful feature, as it permits the insertion calcu-
large, and any phase-space overlap is not enough to formlation to yield a useful result with considerably smaller sam-
subset relation; in case &, is small, butN is large and the pling amounts. Work distributions are presented in Fig. 7 for
important phase space Bfis much too small a part Ato  some of the systems described. The relation between the
permit it to be sampled well in al— B perturbation. In  work distributions and the bias is qualitatively similar to that
these cases a multistage approach would be needed to obtaibserved for the harmonic model.
good results.
We would also like to know the performance of the ap-
proximated bias model by using E@) or Eq.(8) with W*
to be the mean or mode & distributions, because these ~ We have developed formulas for the work distributions
approximations simplify the calculations considerably. Infor two types of Hamiltonian-based model systems. We have
Fig. 4 we make these comparisons, which show that usingpplied the neglected-tail bias model for nonequilibrium
Eqg. (6) with the mean value oP* is good enough to ap- work calculations, and through numerical studies we have
proximate the biases for this harmonic model, while 8). demonstrated that the model is effective in characterizing the
works well only for the large bias values. Also it is better to bias in these systems. We have shown that the models exhibit
use the mean value & instead of the mode value, because asymmetric bias, in that the magnitude of the bias is larger
the P* distribution itself is asymmetri¢it has a longer tail on  when the perturbation is applied in one direction versus the
one side than the other sideso the mean is more represen- other. The neglected-tail model indicates that the smaller bias
tative than the mode. is obtained when sampling the system with the broader work
The neglected-tail model and Eqg) and(6), in particu-  distribution, perturbing into the system with the narrower
lar, indicate that the bias is entirely determingd least at distribution.
large M) from the work distributiongpx(W), either directly One of our interests in presenting and examining these
or through the cumulative distributior(W). Thus we can  models is in helping us to understand the relation between
consider the behavior in terms of the groups that appear ithe performance of a NEW or FEP calculation and the nature
the expressions derived above for the work distributions. Foof the overlap of the important phase spaces of the two sys-

10
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T T T T
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V. CONCLUSIONS
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FIG. 5. Work distributions for different harmonic-model systems as keyed in Table Il. The abscissa is th@nworis of kT). The
rightmost distribution igpa(W), and the leftmost distribution ipg(W). All curves are normalized to unity. Figures are arranged such that
those more to the right represent IarwANxS and those further dow(for a givenN) represent largetwg/ wa. First three rows arél=5,
and last two rows ar&l=50.
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TABLE Il. Summary of parameter sets for the harmonic-model

PHYSICAL REVIEW E 70, 066702(2004)

systems examined in Fig. 5. In all cag@s1 andwa=1. 1 i
op |
Case N BN wgl wp %o AF 100 od F
A 5 4 1 0.894 0 = - C
B 5 50 1 3.16 0 £ i |
5 10 4 260 OB G Qg ~ol L
C 5 0 2 0 1.73 @ 3 ~0momo e E
D 5 4 2 0.894 1.73 s ] E
E 5 50 2 316 173 g B
F 5 0 10 0 5.76 S P N T U L
G 5 4 10 0.894  5.76 ] g
H 5 50 10 3.16 5.76 ] i
| 50 0 2 0 17.3 8. o Qo .. i
J 50 4 2 0283  17.3 —leiEiace ARl
K 50 50 2 1 173 10" 10" 10*  10°  10*  10°  10°
L 50 0 10 0 57.6 Number of trajectories sampled, M
M 50 4 10 0.283 57.6
N 50 50 10 1 576 FIG. 6. Bias(in absolute valugin the free-energy difference for

tems of interest. The models presented here are defined
terms of particles sampling a phase space, so they can lgfp

the discrete model, as a function of the number of free-energy per-
turbations performed. Circles describe the results of numerical cal-
culations, and lines are given by the neglected-tail bias model. Let-

{8s describe different model systems as keyed in Table Il
percase lettergand solid liney are for the insertion direction

studied from this pe'rspective. We think this pgint of view C"’m(A—> B), and lowercase letterglashed linesare for the deletion
be helpful in choosing and formulating multistage methodsyjrection(8— A).
that can greatly aid in obtaining accurate free-energy differ-

ences for a minimum amount of sampling. Investigations i
this direction are currently underway.
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nbegin by deriving the joint density of states for the energies

of the A and B systems. Thus we defin@(U,,Ug) as the
probability density for configurations that have enetgyyin
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APPENDIX

Here we derive the instantaneous-change work distribu-
tions for the system of uncoupled harmonic oscillators. We

N
X 5(UB - wgX, (X — x0>2> . (A1)

i=1

TABLE Ill. Summary of parameter sets for the discrete-modeIAs a notational convenience we introduce the scaled energies

systems examined in Figs. 6 and 7. In all cagssl and epg

=¢ep1=0. ~ U ~ U
B1 A:—A , UB=—B , (A2)
(JJAN a)BNXS
Case N f SAl SBO AF
A 50 0.3 0.3 0.5 -3.73 then
B 50 0.3 0 2 15.0
C 50 0.3 0 5 17.7 N
D 50 0.3 3 5 -37.0 Q(Up,Up) = (wpwp) HNx)N22 J dxNs UA—Z”?
E 50 0.9 0.3 0.5 20.5 N i=1
F 50 0.9 0 2 75.3 _ N P
G 20 03 0 2 6.01 X8| Ug— 2 k—-N"9?]. (A3)
H 20 03 0 5 7.08 =t
[ 20 0.4 0.1 50 9.04

The 6 functions are implemented using the integral identity
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FIG. 7. Work distributions for different discrete-model systems as keyed in Table 11l and with FEP bias as shown in Fig. 6. The abscissa
is the work(in units of kT). The rightmost distributioriusing thick lineg is pa(W), and the leftmost distributiotthin lines is pg(W). All

distributions are normalized to unity.

8(x) = ZiJ dzexp(x2),

where the integral is performed along a vertical contour in
the complex plane, with an infinitesimal but nonzero positive

real component. Substituting in EGA3),

(wawg) HNXG)N22
(2mi)?

xf o derx;{zA(DA—ET(iz
N Ca

Q(UAi UB) =

B

(A4)

)]
XL dz ex;{zB(UB—E ()'(i—N‘l/z)z)].

(A5)

71_N/ 2

Q(Up,Ug) = (wAwB)_l(NX(Z))N/Z_ZW

XJ dz,J dzBexp(zADA)
Ca Cs

)(ZA+ z5) V2,

~ ZpZg
Xexp(zgU exp(—
P(zgUp) o

A B
(A6)
We definez such thatzg=z-z, and complete the integral
OVer z,:
. 27_[_(N+1)
Q(Up,Ug) = N
(UaUg) (wAwB) XS (277)2

Xf dzexp[Z[DAmaXDB)_DA]
c 4=

X[UA UA m|n(UB)]:| (N 1>/2 (A7)

We now exchange the order of integration and complete the

integrals over the coordinates. Then,

where
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U, (D )= (01/2_ 1)2 To obtain the work distribution that would be observed
Amint =B B ' when sampling thed ensemble, we need instead the joint
density of states folJ, and W=Ug—U,. This is easily ob-

DA’ma*(DB) = (UY?+1)?, (A8) tained through manipulation of E¢A9), yielding
(N-D)/2
which yields Qu(U “LNyR) N2 2. T
w( Av\N) (wAwB) ( >€) 2T((N-1)/2)
-2 N 1)/2
Q(Up, NN 2 ————
(UnUp) = (onop) (N2 (0 L(l__) O W) — U]
1~ = = (N-3)/2
Xy —[U Ug) — UaAllU ~ o~
{4[ amalUs) = UnlLUs X[Up- UA,min(Vv)]:| , (A11)
_ _ (N-3)/12
- UA,min(UB)] : (A9) where
~ 1-\dW) \*
The univariate density of states can be recovered by integra- Uamin(W) = m , (Al2a)
tion overUp:
S\ 2
~ ~ 1+VD(W)
(mwg)V?  \jom U = (—) : Al12b
Q(Up) = NXS‘”AI Q(UA: B)dUA —BUNIZ g AmalW) (1 - wplwg) ( )
U min I'(N/2)
A10 W
(A10) DW) = 2 + N)(é(l—%). (A120)
which is consistent with the previously established formula @B “8
for the density of states of W uncoupled harmonic oscilla- Then upon integration over the Boltzmann-weighted energies
tors [17]. of systemA and normalization, we obtain
Ua madW) UA maxd W)
Pa(W) = Q(Up,W)ePYadU, f O(Up, WerdU,
UA min(VV) m|n UA m|n
_ Bonon oo gy - BeaNgL +D<W)]> <2BwANX3\"D(_W)> (A13)
1 wA/wB (1 - wA/wB)2 N/2-1 (1 - wA/wB)Z '
[
wherel,(2) is the Bessel function anB(W) is as defined in N  wpwg
Eq. (A12c); the cumulative distributions are determined by 2'1 - wdw
numerical integration. Two special cases arise: whgn CaW=1- ~B , (A15)
=0 and whenw,=wg, respectively. Wherx,=0, the energy F(N)
of one system uniquely determines the energy of the other, 2
andU, andUg are not independent in the density of states.
Thus where y(n,z) is the incomplete gamma function. For the
1 N2 (U \N2 (U, U other special case, the work distribution is Gaussian:
e e
(I)A(I)BF(N/Z) wp wp g B 1/2 (W_wN)%)Z
Pa(W) = 47N ex —BW
(%=0), (A14) o @
and for this case
(0= wp=wg). (A16)
(Vv) ~ ( wA/wB )NIZ(B\A/)NIZ_:L %_ wA/wB W)
PAW) =8 1-wplwg I'(N/2) ex 1-wplwg ’ This case was treated in some detail in previous WaE.
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